3,179 research outputs found

    Ridge Production in High-Multiplicity Hadronic Ultra-Peripheral Proton-Proton Collisions

    Full text link
    An unexpected result at the RHIC and the LHC is the observation that high-multiplicity hadronic events in heavy-ion and proton-proton collisions are distributed as two "ridges", approximately flat in rapidity and opposite in azimuthal angle. We propose that the origin of these events is due to the inelastic collisions of aligned gluonic flux tubes that underly the color confinement of the quarks in each proton. We predict that high-multiplicity hadronic ridges will also be produced in the high energy photon-photon collisions accessible at the LHC in ultra-peripheral proton-proton collisions or at a high energy electron-positron collider. We also note the orientation of the flux tubes between the quark and antiquark of each high energy photon will be correlated with the plane of the scattered proton or lepton. Thus hadron production and ridge formation can be controlled in a novel way at the LHC by observing the azimuthal correlations of the scattering planes of the ultra-peripheral protons with the orientation of the produced ridges. Photon-photon collisions can thus illuminate the fundamental physics underlying the ridge effect and the physics of color confinement in QCD.Comment: Presented by SJB at Photon 2017: The International Conference on the Structure and the Interactions of the Photon and the International Workshop on Photon-Photon Collisions. CERN, May 22-26, 2017. References adde

    Computer Administered Safety Planning for Individuals at Risk for Suicide: Development and Usability Testing

    Get PDF
    BACKGROUND: Safety planning is a brief intervention that has become an accepted practice in many clinical settings to help prevent suicide. Even though it is quick compared to other approaches, it frequently requires 20 min or more to complete, which can impede adoption. A self-administered, Web-based safety planning application could potentially reduce clinician time, help promote standardization and quality, and provide enhanced ability to share the created plan. OBJECTIVE: The aim of this study was to design, build, and test the usability of a Web-based, self-administered safety planning application. METHODS: We employed a user-centered software design strategy led by a multidisciplinary team. The application was tested for usability with a target sample of suicidal patients. Detailed observations, structured usability ratings, and Think Aloud procedures were used. Suicidal ideation intensity and perceived ability to cope were assessed pre-post engagement with the Web application. RESULTS: A total of 30 participants were enrolled. Usability ratings were generally strong, and all patients successfully built a safety plan. However, the completeness of the safety plan varied. The mean number of steps completed was 5.5 (SD 0.9) out of 6, with 90% (27/30) of participants completing at least 5 steps and 67% (20/30) completing all 6 steps. Some safety planning steps were viewed as inapplicable to some individuals. Some confusion in instructions led to modifications to improve understandability of each step. Ratings of suicide intensity after completion of the application were significantly lower than preratings, pre: mean 5.11 (SD 2.9) versus post: mean 4.46 (SD 3.0), t27=2.49, P=.02. Ratings of ability to cope with suicidal thoughts after completion of the application were higher than preratings, with the difference approaching statistical significance, pre: mean 5.93 (SD 2.9), post: mean 6.64 (SD 2.4), t27=-2.03, P=.05. CONCLUSIONS: We have taken the first step toward identifying the components needed to maximize usability of a self-administered, Web-based safety planning application. Results support initial consideration of the application as an adjunct to clinical contact. This allows for the clinician or other personnel to provide clarification, when needed, to help the patient build the plan, and to help review and revise the draft

    The Relativistic N-body Problem in a Separable Two-Body Basis

    Full text link
    We use Dirac's constraint dynamics to obtain a Hamiltonian formulation of the relativistic N-body problem in a separable two-body basis in which the particles interact pair-wise through scalar and vector interactions. The resultant N-body Hamiltonian is relativistically covariant. It can be easily separated in terms of the center-of-mass and the relative motion of any two-body subsystem. It can also be separated into an unperturbed Hamiltonian with a residual interaction. In a system of two-body composite particles, the solutions of the unperturbed Hamiltonian are relativistic two-body internal states, each of which can be obtained by solving a relativistic Schr\"odinger-like equation. The resultant two-body wave functions can be used as basis states to evaluate reaction matrix elements in the general N-body problem. We prove a relativistic version of the post-prior equivalence which guarantees a unique evaluation of the reaction matrix element, independent of the ways of separating the Hamiltonian into unperturbed and residual interactions. Since an arbitrary reaction matrix element involves composite particles in motion, we show explicitly how such matrix elements can be evaluated in terms of the wave functions of the composite particles and the relevant Lorentz transformations.Comment: 42 pages, 2 figures, in LaTe

    Spontaneous Stratification in Granular Mixtures

    Full text link
    Granular materials size segregate when exposed to external periodic perturbations such as vibrations. Moreover, mixtures of grains of different sizes spontaneously segregate in the absence of external perturbations: when a mixture is simply poured onto a pile, the large grains are more likely to be found near the base, while the small grains are more likely to be near the top. Here, we report a spontaneous phenomenon arising when we pour a mixture between two vertical plates: the mixture spontaneously stratifies into alternating layers of small and large grains whenever the large grains are rougher than the small grains. In contrast, we find only spontaneous segregation when the large grains are more rounded than the small grains. The stratification is related to the occurrence of avalanches; during each avalanche the grains comprising the avalanche spontaneously stratify into a pair of layers through a "kink" mechanism, with the small grains forming a sublayer underneath the layer of large grains.Comment: 4 pages, 6 figures, http://polymer.bu.edu/~hmakse/Home.htm

    Hopf algebras and Markov chains: Two examples and a theory

    Get PDF
    The operation of squaring (coproduct followed by product) in a combinatorial Hopf algebra is shown to induce a Markov chain in natural bases. Chains constructed in this way include widely studied methods of card shuffling, a natural "rock-breaking" process, and Markov chains on simplicial complexes. Many of these chains can be explictly diagonalized using the primitive elements of the algebra and the combinatorics of the free Lie algebra. For card shuffling, this gives an explicit description of the eigenvectors. For rock-breaking, an explicit description of the quasi-stationary distribution and sharp rates to absorption follow.Comment: 51 pages, 17 figures. (Typographical errors corrected. Further fixes will only appear on the version on Amy Pang's website, the arXiv version will not be updated.

    Effects of antenatal betamethasone on preterm human and mouse ductus arteriosus: comparison with baboon data.

    Get PDF
    BackgroundAlthough studies involving preterm infants ≤34 weeks gestation report a decreased incidence of patent ductus arteriosus after antenatal betamethasone, studies involving younger gestation infants report conflicting results.MethodsWe used preterm baboons, mice, and humans (≤276/7 weeks gestation) to examine betamethasone's effects on ductus gene expression and constriction both in vitro and in vivo.ResultsIn mice, betamethasone increased the sensitivity of the premature ductus to the contractile effects of oxygen without altering the effects of other contractile or vasodilatory stimuli. Betamethasone's effects on oxygen sensitivity could be eliminated by inhibiting endogenous prostaglandin/nitric oxide signaling. In mice and baboons, betamethasone increased the expression of several developmentally regulated genes that mediate oxygen-induced constriction (K+ channels) and inhibit vasodilator signaling (phosphodiesterases). In human infants, betamethasone increased the rate of ductus constriction at all gestational ages. However, in infants born ≤256/7 weeks gestation, betamethasone's contractile effects were only apparent when prostaglandin signaling was inhibited, whereas at 26-27 weeks gestation, betamethasone's contractile effects were apparent even in the absence of prostaglandin inhibitors.ConclusionsWe speculate that betamethasone's contractile effects may be mediated through genes that are developmentally regulated. This could explain why betamethasone's effects vary according to the infant's developmental age at birth

    Effects of boundary conditions on magnetization switching in kinetic Ising models of nanoscale ferromagnets

    Full text link
    Magnetization switching in highly anisotropic single-domain ferromagnets has been previously shown to be qualitatively described by the droplet theory of metastable decay and simulations of two-dimensional kinetic Ising systems with periodic boundary conditions. In this article we consider the effects of boundary conditions on the switching phenomena. A rich range of behaviors is predicted by droplet theory: the specific mechanism by which switching occurs depends on the structure of the boundary, the particle size, the temperature, and the strength of the applied field. The theory predicts the existence of a peak in the switching field as a function of system size in both systems with periodic boundary conditions and in systems with boundaries. The size of the peak is strongly dependent on the boundary effects. It is generally reduced by open boundary conditions, and in some cases it disappears if the boundaries are too favorable towards nucleation. However, we also demonstrate conditions under which the peak remains discernible. This peak arises as a purely dynamic effect and is not related to the possible existence of multiple domains. We illustrate the predictions of droplet theory by Monte Carlo simulations of two-dimensional Ising systems with various system shapes and boundary conditions.Comment: RevTex, 48 pages, 13 figure

    Interleukin-1β Maturation Triggers Its Relocation to the Plasma Membrane for Gasdermin-D-Dependent and -Independent Secretion

    Get PDF
    IL-1β requires processing by caspase-1 to generate the active, pro-inflammatory cytokine. Acute IL-1β secretion from inflammasome-activated macrophages requires caspase-1-dependent GSDMD cleavage, which also induces pyroptosis. Mechanisms of IL-1β secretion by pyroptotic and non-pyroptotic cells, and the precise functions of caspase-1 and GSDMD therein, are unresolved. Here, we show that, while efficient early secretion of endogenous IL-1β from primary non-pyroptotic myeloid cells in vitro requires GSDMD, later IL-1β release in vitro and in vivo proceeds independently of GSDMD. IL-1β maturation is sufficient for slow, caspase-1/GSDMD-independent secretion of ectopic IL-1β from resting, non-pyroptotic macrophages, but the speed of IL-1β release is boosted by inflammasome activation, via caspase-1 and GSDMD. IL-1β cleavage induces IL-1β enrichment at PIP2-enriched plasma membrane ruffles, and this is a prerequisite for IL-1β secretion and is mediated by a polybasic motif within the cytokine. We thus reveal a mechanism in which maturation-induced IL-1β trafficking facilitates its unconventional secretion
    corecore